Abstract
In this study, V was used as a dopant to defect into the TiO2 lattice, leading to formation of Ti3+ and V4+ in the lattice. The presence of Ti3+ and V4+ introduced into the TiO2 lattice increased the electron–hole pair generation capacity and electron–hole pair separation efficiency of the TiO2, leading to enhancement of the photocatalytic activity of the photocatalyst. Porous polyurethane (PU) was used to immobilize the V-doped TiO2 by creating chemical bonds. The use of porous substrate contributed to the increased adsorption ability of the enhanced photocatalyst, as well as expanded its application for the removal of toluene from aerosols. Under dark conditions, the V-TiO2/PU only exhibited adsorption ability for toluene treatment in aerosol. Under visible light conditions, the V-TiO2/PU exhibited high photocatalytic oxidation ability for the removal of toluene in aerosol. The photocatalytic oxidation ability was found to depend on the V to TiO2 ratio. The optimal V content in V/TiO2 for enhancing the photocatalytic activity of TiO2 was determined to be 6wt%. Even under visible light irradiation, the 6% V-TiO2/PU sample could photocatalytically remove 80% of the toluene in 200-ppmV inlet gas, while 89.3% of the removed amount was mineralized into CO2 and H2O.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.