Abstract
Abstract Context and Objective: Activating mutations in the calcium-sensing receptor (CaSR) gene cause autosomal dominant hypocalcemia (ADH). The aims of the present study were the functional characterization of novel mutations of the CaSR found in patients, the comparison of in vitro receptor function with clinical parameters, and the effect of the allosteric calcilytic NPS-2143 on the signaling of mutant receptors as a potential new treatment for ADH patients. Methods: Wild-type and mutant CaSR (T151R, P221L, E767Q, G830S, and A844T) were expressed in human embryonic kidney cells (HEK 293T). Receptor signaling was studied by measuring intracellular free calcium in response to different concentrations of extracellular calcium ([Ca2+]o) in the presence or absence of NPS-2143. Results: All ADH patients had lowered serum calcium ranging from 1.7 to 2.0 mm and inadequate immunoreactive PTH and urinary calcium excretion. In vitro testing of CaSR mutations from these patients revealed exaggerated [Ca2+]o-induced cytosolic Ca2+ responses with EC50 values for [Ca2+]o ranging from 1.56 to 3.15 mm, which was lower than for the wild-type receptor (4.27 mm). The calcilytic NPS-2143 diminished the responsiveness to [Ca2+]o in the CaSR mutants T151R, E767Q, G830S, and A844T. The mutant P221L, however, was only responsive when coexpressed with the wild-type CaSR. Conclusion: Calcilytics might offer medical treatment for patients with autosomal dominant hypocalcemia caused by calcilytic-sensitive CaSR mutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.