Abstract

IntroductionActivated microbubbles (MBs) have the potential to deliver nanoparticles in complex microspaces such as root canals. The objective of the study is to determine the fluid dynamical parameters associated with ultrasonic, sonic, and manual activation of MBs in simulated root canals and to assess the effectiveness of surface coating formed by delivering chitosan nanoparticles using activated MBs within root canals in extracted teeth. MethodsIn stage 1, polydimethylsiloxane models were fabricated to determine the physical effects of MBs agitated manually (MM), sonically (MS), and ultrasonically (MU). Spherical tracer particles were used to visualize and record the fluid motion using an inverted microscope linked to a high-speed camera. The velocity, wall stress, and penetration depth were analyzed at regions of interest. In stage 2, 35 extracted human incisors were divided into 7 groups to evaluate the effectiveness of chitosan nanoparticle delivery using activated MBs (MM, MS, and MU groups). Field emission scanning electron microscopy and energy-dispersive X-rays were used to characterize the nanoparticle coating on root canal dentin and the degree of dentinal tubule occlusion. ResultsIn stage 1, velocity, wall stress, and penetration depth increased significantly in the MB groups compared with the control (P < .01). In stage 2, 70% of the dentin surface was coated, and 65% of the dentinal tubule was occluded with nanoparticle-based coating in the MM, MU, and water ultrasonic groups. Element analysis displayed the presence of dentin smear on the root canal surface for the MU and water ultrasonic groups. ConclusionsActivated MBs enhanced fluid dynamical parameters when compared with water in simulated root canal models. Manual activation of MBs resulted in uniform and significant nanoparticle-based surface coating and tubule blockage in root canal dentin without dentin smear formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.