Abstract

Filtration loss control under high-temperature conditions is a worldwide issue among water-based drilling fluids (WBDFs). A core–shell high-temperature filter reducer (PAASM-CaCO3) that combines organic macromolecules with inorganic nanomaterials was developed by combining acrylamide (AM), 2-acrylamide-2-methylpropane sulfonic acid (AMPS), styrene (St), and maleic anhydride (MA) as monomers and nano-calcium carbonate (NCC). The molecular structure of PAASM-CaCO3 was characterized. The average molecular weight of the organic part was 6.98 × 105 and the thermal decomposition temperature was about 300 °C. PAASM-CaCO3 had a better high-temperature resistance. The rheological properties and filtration performance of drilling fluids treated with PAASM-CaCO3 were stable before and after aging at 200 °C/16 h, and the effect of filtration control was better than that of commonly used filter reducers. PAASM-CaCO3 improved colloidal stability and mud cake quality at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.