Abstract

Acinetobacter baumannii, one of the most significant nosocomial pathogens, is capable of producing structurally diverse capsular polysaccharides (CPSs) which are the primary receptors for A. baumannii bacteriophages encoding polysaccharide-degrading enzymes. To date, bacterial viruses specifically infecting A. baumannii strains belonging to more than ten various capsular types (K types) were isolated and characterized. In the present study, we investigate the biological properties, genomic organization, and virus–bacterial host interaction strategy of novel myovirus TaPaz isolated on the bacterial lawn of A. baumannii strain with a K47 capsular polysaccharide structure. The phage linear double-stranded DNA genome of 93,703 bp contains 178 open reading frames. Genes encoding two different tailspike depolymerases (TSDs) were identified in the phage genome. Recombinant TSDs were purified and tested against the collection of A. baumannii strains belonging to 56 different K types. One of the TSDs was demonstrated to be a specific glycosidase that cleaves the K47 CPS by the hydrolytic mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.