Abstract

AbstractOrganic supermolecules have shown great promise for photocatalytic hydrogen peroxide (H2O2) production. However, the limitation of intramolecular charge separation efficiency is still a crucial scientific problem. In this study, a novel acceptor–donor–acceptor (A–D–A) type naphthalenediimide supramolecule (SA‐NDI) is successfully designed for overcoming fundamental issues in organic supermolecule. Composed of one electron‐rich core (naphthalenediimide) and two electron‐poor units (aminopyridine), the supramolecule possesses strong intramolecular charge transfer ability. Meanwhile, the SA‐NDI has an obviously stronger internal electric field, which is 2.83 times higher than that of D–A type supramolecule. The A–D–A type SA‐NDI efficiently accelerates charge separation, so that the intramolecular electron quickly migrates to the acceptor for a two‐electron oxygen reduction reaction. The SA‐NDI supramolecule shows excellent H2O2 accumulation ability (13.7 mm) and stable cyclic time above 120 h. Meanwhile, the catalyst exhibits a superior solar‐to‐chemical conversion efficiency of 1.03% under simulated solar irradiation. This work provides an entirely new idea to design an organic supramolecule with an efficient intramolecular charge transfer monomer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.