Abstract

Continuing the structure-activity relationship studies in the vitamin D area, we designed and synthesized novel C-9 substituted calcitriol analogues, possessing different nonpolar groups at this position. 9α-Methyl-1α,25-(OH)2D3, both epimers of 9-methylene-10,19-dihydro-1α,25-(OH)2D3 as well as the parent vitamin with the "reversed" triene system, 9-methylene-19-nor-1α,25-(OH)2D3, were obtained from the previtamin D precursors, constructed by either Suzuki-Miyaura, Sonogashira, or Stille couplings of the corresponding A- and C,D-ring fragments. An alternative synthetic path, leading to the latter vitamin and its homologue with 9-ethylidene group, involved formation of dienynes as precursors of the respective 19-norprevitamin D compounds. 9β-Methyl-19-nor-1α,25-(OH)2D3 was prepared by homogeneous hydrogenation with Wilkinson catalyst, and this analogue was found to be the most active in vitro. Moreover, 9α-methyl-1α,25-(OH)2D3 and 9-methylene-19-nor-1α,25-(OH)2D3 showed some in vitro activity, however, the in vivo assays indicated only weak calcemic potency of these compounds in the intestinal calcium transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call