Abstract

Choline kinase (ChoK) is the first enzyme in the CDP-choline pathway that synthesizes phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. Human ChoK has three isoforms: ChoKα1, α2, and β. Specific inhibition of ChoKα has been reported to selectively kill tumor cells. In this study, ten new symmetrical bis-pyridinium and bis-quinolinium derivatives were synthesized and tested for their ability to inhibit human ChoKα2. These compounds have electron-releasing groups at position 4 of the pyridinium or quinolinium rings. 1,1'-[(Butane-1,3-diylbis(benzene-1,4-diylmethylene)]bis[4-(4-bromo-N-methylanilino)pyridinium)] dibromide and 1,1'-(biphenyl-3,3'-diylmethylene)bis[7-chloro-4-(perhydroazepine-1-yl)quinolinium] dibromide were identified as highly potent ChoK inhibitors with IC(50) values of 80 nM. Kinetic enzymatic assays indicated a mixed and predominantly competitive mechanism of inhibition for these compounds, which exhibited strong antiproliferative activity (EC(50) 1 μM) against the human breast cancer SKBR3 cell line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.