Abstract

In this study, synthesis, structural characterization, molecular docking studies, and antiproliferative effects in four different cell lines of several novel 16-arylidene-4-azaandrost-5-ene compounds are reported. These compounds were prepared by oxidative cleavage of the enone system of androstenedione followed by an azacyclization reaction and an aldol condensation with various aldehydes at C16. In the androgen-dependent LNCaP cells, the most relevant antiproliferative effects were observed with the 16-phenyl, 16-p-tolyl, and 16-p-nitrophenyl derivatives. Compound 16E-[(4-methylphenyl)methylidene]-4-azaandrost-5-ene-3,17-dione was the most potent in these cells (IC50 = 28.28 μM), having lower antiproliferative effects in the androgen-independent PC-3 cells (IC50 = 45.31 μM). In addition, an interesting selectivity toward cancer cell lines was found for all compounds because a generally low cytotoxicity was detected in healthy human fibroblasts. Furthermore, the 16-p-tolylazaandrostene steroid induced a reduction of viability in LNCaP cells similar to that observed with finasteride, a clinically used 5α-reductase inhibitor. Moreover, molecular docking studies predicted that these 4-azaandrostene derivatives can interact with 5β-reductase, which has a high level of similarity to 5α-reductase enzyme, and with other common targets of steroidal drugs, particularly the enzyme 17α-hydroxylase/17,20-lyase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.