Abstract
Obtaining a 3D feature description with high descriptiveness and robustness under complicated nuisances is a significant and challenging task in 3D feature matching. This paper proposes a novel feature description consisting of a stable local reference frame (LRF) and a feature descriptor based on local spatial voxels. First, an improved LRF was designed by incorporating distance weights into Z- and X-axis calculations. Subsequently, based on the LRF and voxel segmentation, a feature descriptor based on voxel homogenization was proposed. Moreover, uniform segmentation of cube voxels was performed, considering the eigenvalues of each voxel and its neighboring voxels, thereby enhancing the stability of the description. The performance of the descriptor was strictly tested and evaluated on three public datasets, which exhibited high descriptiveness, robustness, and superior performance compared with other current methods. Furthermore, the descriptor was applied to a 3D registration trial, and the results demonstrated the reliability of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Visual Computing for Industry, Biomedicine, and Art
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.