Abstract
HIV, the virus that causes AIDS (acquired immunodeficiency syndrome), is one of the world's most severe health and development challenges. In this study, a novel series of 2-(diphenyl methylidene) malonic acid derivatives were designed as triple inhibitors of HIV reverse transcriptase, integrase, and protease. Docking models revealed that the target compounds have appropriate affinities to the active sites of the three HIV key enzymes. The synthesized malonic acid analogs were evaluated for their activities against the HIV virus (NL4-3) in HeLa cells cultures. Among them, compound 3 was the most potent anti-HIV agent with 55.20% inhibition at 10 μM and an EC50 of 8.4 μM. Interestingly, all the synthesized compounds do not show significant cytotoxicity at a concentration of 10 μM. As a result, these compounds may serve as worthy hits for the development of novel anti-HIV-agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.