Abstract

To allow the use of molybdenum disulfide (MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) in mainstream Si CMOS manufacturing processes for improved future scaling, a novel MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> transistor with a 10-nm physical gate length created using a p-type doped Si fin as the back-gate electrode is presented. The fabrication technology of the ultra-small MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> device shows fully process compatibility with conventional Si-FinFET process flow and it is also the first time to realize the large-scale fabrication of the arrayed MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> transistors with 10-nm gate lengths. The fabricated ultrathin transistors, consisting of 10-nm gate length and 0.7-nm monolayer CVD MoS2, exhibit good switching characteristics and the average drain current on/off ratio reaches to over 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> . This technology provides a promising approach for future CMOS scaling with large scale new 2-D material transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call