Abstract

IBD is a chronic idiopathic gut condition characterised by recurring and remitting inflammation of the colonic mucosal epithelium. Benzimidazole is a prominent and attractive heterocyclic compound with diverse actions. Although seven locations in the benzimidazole nucleus can be changed with a number of chemical entities for biological activity, benzimidazole fused with a phenyl ring has caught our interest. To find and optimize novel 1-H phenyl benzimidazole compounds with favorable physicochemical features and drug-like characteristics for the treatment of IBD, in-silico studies and in-vitro approach were being used to identify and optimize these derivatives as potent inhibitors of IL-23 mediated inflammatory signaling pathway. All six compounds exhibit favorable drug-like properties with good intestinal absorption properties. Its high affinity for the target JAK and TYK, which is thought to be a key immunological signaling cascade in the pathophysiology of IBD, is revealed by docking studies. Because of their effects on decreasing iNOS-derived NO release and IL-23-mediated immune signaling by decreasing COX-2 and LOX activity, it's conceivable that the compounds CS3 and CS6 are better options for the treatment of IBD based on in-vitro cell line investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call