Abstract
High-altitude pulmonary edema (HAPE) is a potentially fatal disease. Notoginsenoside R1 is a novel phytoestrogen with anti-inflammatory, antioxidant and anti-apoptosis properties. However, its effects and underlying mechanisms in the protection of hypobaric hypoxia-induced HAPE rats remains unclear. This study aimed to explore the protective effects and underlying mechanisms of Notoginsenoside R1 in hypobaric hypoxia-induced HAPE. We found that Notoginsenoside R1 alleviated the lung tissue injury, decreased lung wet/dry ratio, and reduced inflammation and oxidative stress. Additionally, Notoginsenoside R1 ameliorated the changes in arterial blood gas, decreased the total protein concentration in bronchoalveolar lavage fluid, and inhibited the occurrence of apoptosis caused by HAPE. In the process of further exploration of the mechanism, it was found that Notoginsenoside R1 could promote the activation of ERK1/2-P90rsk-BAD signaling pathway, and the effect of Notoginsenoside R1 was attenuated after the use of ERK1/2 inhibitor U0126. Our study indicated that the protective effects of Notoginsenoside R1 against HAPE were mainly related to the inhibition of inflammation, oxidative stress, and apoptosis. Notoginsenoside R1 may be a potential candidate for preventing HAPE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.