Abstract

IntroductionNotochordal cells (NCs) are influential in development of the intervertebral disc (IVD) and species that retain NCs do not degenerate. IVD repair using bone marrow derived mesenchymal stem cells (MSCs) is an attractive approach and the harsh microenvironment of the IVD suggests pre-differentiation is a necessary first step. The goal of this study was to use soluble factors from NCs in alginate and NCs in their native tissue to differentiate human MSCs to a young nucleus pulposus (NP) phenotype.MethodsHuman MSCs (cultured under micromass conditions for 21 days in hypoxia) were differentiated with conditioned medium derived from porcine notochordal cells in native tissue (NCT) or in alginate beads (NCA), and compared with chondrogenic (TGFβ-3) or basal medium. A PCR array of 42 genes was utilized to screen a large number of genes known to be associated with the healthy NP phenotype and pellet cultures were also evaluated for glycosaminoglycan content, histology and viability. Proteomic analysis was used to assess candidate soluble factors in NCA and NCT.ResultsNotochordal cell conditioned media had diverse effects on MSC phenotype. NCT resulted in the highest levels of glycosaminoglycan (GAG), as well as up-regulation of SOX9 and Collagen II gene expression. NCA demonstrated effects that were catabolic yet also anti-fibrotic and minimally hypertrophic with down-regulation of Collagens I and III and low levels of Collagen X, respectively. Micromass culture and hypoxic conditions were sufficient to promote chondrogenesis demonstrating that both basal and chondrogenic media produced similar phenotypes. Candidate matricellular proteins, clusterin and tenascin were identified by proteomics in the NCA group.ConclusionsNCs secreted important soluble factors capable of differentiating MSCs to a NP phenotype synthesizing high levels of proteoglycan while also resisting collagen fiber expression and hypertrophy, yet results were sensitive to the conditions in which media was generated (cells in alginate versus cells in their native tissue) so that further mechanistic studies optimizing culture conditions and defining important NC secreted factors are required. Matricellular proteins, such as clusterin and tenascin, are likely to be important to optimize differentiation of MSCs for maximum GAG production and reduced collagen fiber expression.

Highlights

  • Notochordal cells (NCs) are influential in development of the intervertebral disc (IVD) and species that retain NCs do not degenerate

  • To generate conditioned media (CM) from notochordal cells seeded in alginate beads (NCA), nucleus pulposus (NP) tissue was first digested as described by Urban et al [37]

  • Phenotypic marker genes Treatment of mesenchymal stem cells (MSCs) with B, C, notochordal cells in alginate (NCA) and notochordal cells in tissue (NCT) for 21 days in pellet culture had diverse effects on the gene expression of phenotypic markers with few differences observed compared to the basal group for these genes (Table 2)

Read more

Summary

Introduction

Notochordal cells (NCs) are influential in development of the intervertebral disc (IVD) and species that retain NCs do not degenerate. IVD repair using bone marrow derived mesenchymal stem cells (MSCs) is an attractive approach and the harsh microenvironment of the IVD suggests pre-differentiation is a necessary first step. Cell-based therapies aim to restore metabolic homeostasis within the IVD and reduce inflammation by replacing or augmenting the disc cells at an early stage of degeneration. Such therapies can adapt and integrate with the native tissue microenvironment restoring structure and function with limited long term side effects. There is evidence to suggest that MSCs may not be well suited to the hostile anaerobic environment of the diseased IVD [7,8] so that long term survival and integration within the disc may require pre-differentiation of the MSCs in culture towards a phenotype more representative of native IVD cells

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.