Abstract

Calcification of aortic valves results in valvular aortic stenosis and is becoming a common valvular condition in elderly populations. An understanding of the molecular mechanisms of this valve lesion is important for revealing potential biomarkers associated with the development and progression of this disease. In order to identify proteins that are differentially expressed in calcific aortic valves (CAVs) compared with those in adjacent normal valvular tissues, comprehensive analysis of differentially expressed proteins in the tissues was done by a quantitative proteomic approach with isobaric tag for absolute and relative quantitation labeling followed by nanoliquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. The proteomic analysis revealed 105 proteins differentially expressed in CAVs in contrast to adjacent normal valvular tissues with high confidence. Significantly increased expression (>_1.3-fold) was found in 34 proteins, whereas decreased expression (<0.77-fold) was found in 39 proteins in CAVs. Among them, α-2-HS-glycoprotein showed the greatest increase in expression (6.54-fold) and tenascin-X showed the greatest decrease in expression (0.37-fold). Numerous extracellular matrix proteins such as collagens were identified as proteins with significantly decreased expression. Panther pathway analysis showed that some of the identified proteins were linked to blood coagulation and integrin signaling pathways. Cluster analysis of the 105 proteins differentially expressed in CAVs based on the expression pattern revealed that tenascin-X was clustered with proteins controlling collagen structure and function, especially collagen fibrillogenesis, such as decorin and fibromodulin. We confirmed decreased levels of these proteins in CAVs by Western blot analyses. These results indicated that massive destruction of the extracellular matrix occurs in CAVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.