Abstract
In this paper, we present a variable-length binary code for permutations of degree n, where n is a power of 2. The Lehmer code and its variants provide a bijection between permutations and the indexes in lexicographic ordering. They provide compression of permutations approaching Shannon bound at the expense of structural information. The variable-length code proposed in this paper has asymptotically optimal compression capability while preserving structural information of permutations. In other words, the code encodes the way a permutation is organized, and is optimal in the sense that the ratio of average codeword length and the entropy of permutations approaches 1 as n tends to infinity. The encoding and decoding are efficient. Like the Lehmer code and other enumerative codes, it is not necessary to construct look-up tables. The code is complete and satisfies the prefix condition. Furthermore, the codeword length indicates how “well shuffled” a permutation is. Permutations with longer codewords seem more “random.” An enumeration method of the variable-length code is also given by using T. Cover's enumerative coding scheme and Schalkwijk code. This gives a different indexing from the Lehmer code. This work can be extended to the case of arbitrary n in a straightforward way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.