Abstract

Introduction: Osteoporosis is a frequent age-related disease, which affects millions of people worldwide. Despite significant progress in the treatment of the disease, a high number of patients still are underdiagnosed and undertreated. Therefore, novel animal models for the investigation of the disease are necessary. Nothobranchius furzeri is the shortest-lived vertebrate (with a lifespan of 3–7 months) that can be kept in captivity. Although it is an established model for aging research, studies on bone are lacking. The aim of this study was therefore to characterize N. furzeri as a potential model for age-related osteoporosis. Materials and Methods: Bone properties of aging N. furzeri were investigated in male and female fish of the Gona Re Zhou strain, which were between 8 and 20 weeks old. Micro-computed tomography (Scanco Medical µCT35) was performed to determine the bone properties of the vertebral bodies. Bone structure and remodeling were investigated by different histological staining techniques and histomorphometry. The chemical composition of fish vertebrae and intervertebral discs was analyzed by Raman microspectroscopy. Results: Osteoblasts, mono- and multinucleated osteoclasts but no osteocytes could be observed in the vertebral area of N. furzeri. Histomorphometric evaluations revealed a significant decrease of the number of osteoblasts/bone perimeter and for osteoid volume/bone volume (BV) a trend toward a decrease in old male N. furzeri. Comparing male and female fish, males showed higher BV densities and cortical thickness. The relative values of the bone volume density of 20-week-old male N. furzeri were significantly lower than 10-week-old ones. The mineral to matrix ratio increased with age in male and female fish. In the intervertebral discs, proteoglycans in relation to the organic matrix were significantly lower in older female fish. Conclusion: Our finding of a lack of osteocytes is in agreement with the fact that N. furzeri belongs to the evolutionarily advanced teleost fish. Furthermore, not only age-specific but also sex-specific differences were visible in the bone properties of N. furzeri, which can be taken into consideration for the study of gender aspects of age-related musculoskeletal diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.