Abstract

Recently, several discussions on the possible observability of 4-vector fields have been published in literature. Furthermore, several authors recently claimed existence of the helicity=0 fundamental field. We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We study the massless limits. In fact, a theoretical motivation for this venture is the old papers of Ogievetskii and Polubarinov, Hayashi, and Kalb and Ramond. They proposed the concept of the notoph, whose helicity properties are complementary to those of the photon. We analyze the quantum field theory with taking into account mass dimensions of the notoph and the photon. It appears to be possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric second-rank spinor. Next, we proceed to derive equations for the symmetric tensor of the second rank on the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric multispinor of the fourth rank is used. Due to serious problems with the interpretation of the results obtained on using the standard procedure we generalize it and obtain the spin-2 relativistic equations, which are consistent with the general relativity. Thus, in fact we deduced the gravitational field equations from relativistic quantum mechanics. The relations of this theory with the scalar-tensor theories of gravitation and f(R) are discussed. Particular attention has been paid to the correct definitions of the energy-momentum tensor and other Noether currents in the electromagnetic theory, the relativistic theory of gravitation, the general relativity, and their generalizations. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-notoph, and we conclude that they can probably be seen in experiments in the next few years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call