Abstract

We construct the spaces that the elliptic Ruijsenaars operators act on. It is shown that they are extensible to nonnegative selfadjoint operators on a space of square integrable functions, or preserve a finite dimensional vector space of entire functions. These facts are shown in terms of the R-operators which satisfy the Yang–lBaxter equation. The elliptic Ruijsenaars operators are considered as the elliptic analogues of the Macdonald operators or the difference analogues of the Lame operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.