Abstract
We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle 𝕋. The nonsqueezing result relies on the aforementioned approximations and the finite-dimensional nonsqueezing theorem of Gromov [14]. Unlike the work of Kuksin [22] which initiated the investigation of non-squeezing results for infinite dimensional Hamiltonian systems, the nonsqueezing argument here does not construct a capacity directly. In this way our results are similar to those obtained for the NLS flow by Bourgain [3]. A major difficulty here though is the lack of any sort of smoothing estimate which would allow us to easily approximate the infinite dimensional KdV flow by a finite-dimensional Hamiltonian flow. To resolve this problem we invert the Miura transform and work on the level of the modified KdV (mKdV) equation, for which smoothing estimates can be established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journées équations aux dérivées partielles
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.