Abstract

In this paper we investigate the problem of characterizing infinite consequence relation in standard BL-algebras by the adding of new rules. First of all, we note that finitary rules do not help, therefore we need at least one infinitary rule. In fact we show that one infinitary rule is sufficient to obtain strong standard completeness, also in the first-order case. Similar results are obtained for product logic and for Łukasiewicz logic. Finally, we show some applications of our results to probabilistic logic over many-valued events and to first-order many-valued logic. In particular, we show a tight bound to the complexity of BL first-order formulas which are valid in the standard semantics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.