Abstract
Optimization of robotic workcells is a growing concern in automated manufacturing systems. This study develops a methodology to maximize the production rate of a multifunction robot (MFR) operating within a rotationally arranged robotic cell. An MFR is able to perform additional special operations while in transit between transferring parts from adjacent processing stages. Considering the free-pickup scenario, the cycle time formulas are initially developed for small-scale cells where an MFR interacts with either two or three machines. A methodology for finding the optimality regions of all possible permutations is presented. The results are then extended to the no-wait pickup scenario in which all parts must be processed from the input hopper to the output hopper, without any interruption either on or between machines. This analysis enables insightful evaluation of the productivity improvements of MFRs in real-life robotized workcells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.