Abstract

Chiral anomalies give rise to dissipationless transport phenomena such as the chiral magnetic and vortical effects. In these notes I review the theory from a quantum field theoretic, hydrodynamic and holographic perspective. A physical interpretation of the otherwise somewhat obscure concepts of consistent and covariant anomalies will be given. Vanishing of the CME in strict equilibrium will be connected to the boundary conditions in momentum space imposed by the regularization. The role of the gravitational anomaly will be explained. That it contributes to transport in an unexpectedly low order in the derivative expansion can be easiest understood via holography. Anomalous transport is supposed to play also a key role in understanding the electronics of advanced materials, the Dirac- and Weyl (semi)metals. Anomaly related phenomena such as negative magnetoresistivity, anomalous Hall effect, thermal anomalous Hall effect and Fermi arcs can be understood via anomalous transport. Finally I briefly review a holographic model of Weyl semimetal which allows to infer a new phenomenon related to the gravitational anomaly: the presence of odd viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.