Abstract
Let A in mathbb {Z}^{m times n} be an integral matrix and a, b, c in mathbb {Z} satisfy a ≥ b ≥ c ≥ 0. The question is to recognize whether A is {a,b,c}-modular, i.e., whether the set of n × n subdeterminants of A in absolute value is {a,b,c}. We will succeed in solving this problem in polynomial time unless A possesses a duplicative relation, that is, A has nonzero n × n subdeterminants k1 and k2 satisfying 2 ⋅|k1| = |k2|. This is an extension of the well-known recognition algorithm for totally unimodular matrices. As a consequence of our analysis, we present a polynomial time algorithm to solve integer programs in standard form over {a,b,c}-modular constraint matrices for any constants a, b and c.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.