Abstract

BackgroundIn the previous paper published in 2017, we described the structure of Hox gene cluster of the ascidian, Halocynthia roretzi, and discussed the scenario for the disintegration of Hox gene clusters during evolution of ascidians. The description about the Hox gene cluster structure still represents the latest information, hence it has been left unchanged. In contrast, some points in Discussion, the description on the phylogenetic relationships among tunicates and the theoretical scenario for the disintegration of Hox gene cluster during evolution of ascidians, should be changed because the phylogenetic relationships among tunicates have recently been updated. The above mentioned points were made in accordance with the phylogenetic tree for tunicates based on the mitochondrial DNA sequences, which was the latest at the time of publication. In 2018, however, Kocot et al. and Delsuc et al. proposed new phylogenetic trees for tunicates based on a large number of nuclear gene sequences. The trees obtained by the two groups are essentially the same and different from the previous one in the phylogenetic positions of Appendicularia and Thaliacea, which leads to a change in the order of the emergence of ascidians and the Hox gene cluster disintegration during evolution of ascidians or tunicates.ResultsWe add here a note to update the previous description on the phylogenetic relationships among tunicates and the theoretical scenario, including one Figure, so as to coincide with the new phylogenetic relationships among tunicates based on the nuclear gene sequences.ConclusionThe previous summarized conclusion remains unchanged: we suggest that the Hox gene cluster of the ancestral ascidian experienced extensive genome shuffling during the course of evolution to Hr and Ci. Nevertheless, some features are shared in Hox gene components and gene organization on the chromosomes, suggesting that Hox gene cluster disintegration in ascidians involved early events common to all ascidians and later lineage-specific events.

Highlights

  • In the previous paper published in 2017, we described the structure of Hox gene cluster of the ascidian, Halocynthia roretzi, and discussed the scenario for the disintegration of Hox gene clusters during evolution of ascidians

  • 2) The ancestral chordate evolved, and the last common ancestor of tunicates and vertebrates diverged from the lineage to cephalochordate

  • 3) When the ancestral tunicate diverged from the lineage to vertebrates, it must have experienced extensive genomic rearrangement, including the loss of at least one central Hox genes and early disintegration events in the Hox gene cluster, and likely came to possess tunicate characteristics

Read more

Summary

Introduction

In the previous paper published in 2017, we described the structure of Hox gene cluster of the ascidian, Halocynthia roretzi, and discussed the scenario for the disintegration of Hox gene clusters during evolution of ascidians. Background No change; identical to the previously published version. Materials and methods No change; identical to the previously published version.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call