Abstract

For some diseases, it is recognized that immunity acquired by natural infection and vaccination subsequently wanes. As such, immunity provides temporal protection to recovered individuals from an infection. An immune period is extended owing to boosting of immunity by asymptomatic re-exposure to an infection. An individual’s immune status plays an important role in the spread of infectious diseases at the population level. We study an age-dependent epidemic model formulated as a nonlinear version of the Aron epidemic model, which incorporates boosting of immunity by a system of delay equations and study the existence of an endemic equilibrium to observe whether boosting of immunity changes the qualitative property of the existence of the equilibrium. We establish a sufficient condition related to the strength of disease transmission from subclinical and clinical infective populations, for the unique existence of an endemic equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call