Abstract

The point-splitting renormalization method offers a prescription to calculate finite expectation values of quadratic operators constructed from quantum fields in a general curved spacetime. It has been recently shown by Levi and Ori that when the background metric possesses an isometry, like stationary or spherically symmetric black holes, the method can be upgraded into a pragmatic procedure of renormalization that produces efficient numerical calculations. In this note we show that when the background enjoys three-dimensional spatial symmetries, like homogeneous expanding universes, the above pragmatic regularization technique reduces to the well established adiabatic regularization method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call