Abstract
Diverse atomistic parameters of C60 have been developed and utilized to simulate fullerene solutions in biological environments. However, no thermodynamic assessment and validation of these parameters have been so far realized. Here, we employ extensive molecular dynamics simulations with the thermodynamic integration method in the isothermal-isobaric ensemble to investigate the transfer of a single fullerene C60 between different solvent environments using different potential models. A detailed analysis is performed on the structure and standard Gibbs free energy of transfer of C60 from benzene to ethanol. All of the interactions concerned in the transfer process are included via atomistic models. We notice that having only structural and dynamical properties is not decisive to validate reliable atomic parameters capable of describing a more realistic thermodynamic process. Thus, we employ the calculated free energy of transfer to validate more accurate atomic parameters for the solvation thermodynamics of fullerenes by direct comparison with the solubility experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.