Abstract

Let $k$ be a field and $X$ an indeterminate over $k$. In this note we prove that the domain $k[[X^{p}, X^{q}]]$ (resp. $k[X^{p}, X^{q}]$) where $p, q$ are relatively prime positive integers is always divisorial but $k[[X^{p}, X^{q}, X^{r}]]$ (resp. $k[X^{p}, X^{q}, X^{r}]$) where $p, q, r$ are positive integers is not. We also prove that $k[[X^{q}, X^{q+1}, X^{q+2}]]$ (resp. $k[X^{q}, X^{q+1}, X^{q+2}]$) is divisorial if and only if $q$ is even. These are very special cases of well-known results on semigroup rings, but our proofs are mainly concerned with the computation of the dual (equivalently the inverse) of the maximal ideal of the ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.