Abstract

We explore features of redshift distortion in Fourier analysis of N-body simulations. The phases of the Fourier modes of the dark matter density fluctuation are generally shifted by the peculiar motion along the line of sight, the induced phase shift is stochastic and has probability distribution function (PDF) symmetric to the peak at zero shift while the exact shape depends on the wave vector, except on very large scales where phases are invariant by linear perturbation theory. Analysis of the phase shifts motivates our phenomenological models for the bispectrum in redshift space. Comparison with simulations shows that our toy models are very successful in modeling bispectrum of equilateral and isosceles triangles at large scales. In the second part we compare the monopole of the power spectrum and bispectrum in the radial and plane-parallel distortion to test the plane-parallel approximation. We confirm the results of Scoccimarro (2000) that difference of power spectrum is at the level of 10%, in the reduced bispectrum such difference is as small as a few percents. However, on the plane perpendicular to the line of sight of k_z=0, the difference in power spectrum between the radial and plane-parallel approximation can be more than 10%, and even worse on very small scales. Such difference is prominent for bispectrum, especially for those configurations of tilted triangles. The non-Gaussian signals under radial distortion on small scales are systematically biased downside than that in plane-parallel approximation, while amplitudes of differences depend on the opening angle of the sample to the observer. The observation gives warning to the practice of using the power spectrum and bispectrum measured on the k_z=0 plane as estimation of the real space statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.