Abstract

In a recent paper, Fried and Jarden prove the existence, for all integers g, of non-Hilbertian fields K which cannot be covered by a finite number of sets of the form ϕ (X(K)), where X is a curve of genus ≤g and ϕ is a rational function on X of degree ≥ 2. (If no bound is given on the genus we recover the notion of Hilbertian field.) This generalizes the case g=0, obtained previously by Corvaja and Zannier with a more elementary method. By a suitable modification of that method, we give here a new proof of the result of Fried and Jarden which avoids the use of deep group theoretical results. By a somewhat related construction we give an example of a curve X/Q of any prescribed genus and a Hilbertian field K⊂¯Q such that X/K has the Hilbert property, i.e. the set of rational points X(K) is not thin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call