Abstract

In this paper are presented the approximate formulas for the components of radiation vectors of a short-circuited circular loop with non-uniform current distribution. The formulas are valid for the ratio of loop perimeter to wavelength of the order of 0.5 or less, and assume the current distribution of the hyperbolic cosine form. These formulas lead to the radiation intensity formula from which the expressions for the horizontal and vertical field patterns are derived. The latter formulas are further simplified assuming that the attenuation constant is much smaller than the phase constant. From the expression for horizontal field pattern, it follows that the pattern is symmetrical about the loop axis of symmetry. Moreover, this horizontal pattern exhibits a directional effect with maximum field in the direction of the feeder end of the loop. This directional effect is a function of loop dimensions. The theoretical horizontal pattern agrees very closely with the experimental one. From the expression for vertical field pattern, it follows that the non-uniform current distribution produces a pattern intermediate between that for horizontal dipole and horizontal small loop with uniform current distribution. The field intensity in the zenithal direction is again a function of loop dimensions. Using the expression for radiation intensity, formulas for a radius of equivalent circular horizontal field pattern, power gain, average power gain, and radiation resistance are derived. It is shown that the average power gain is essentially a function of loop radius and decreases with the increase of the latter. Finally, the approximate expression for the attenuation constant of the transmission line equivalent to the loop is derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call