Abstract

E. Artin conjectured that any integer $a > 1$ which is not a perfect square is a primitive root modulo $p$ for infinitely many primes $ p.$ Let $f_a(p)$ be the multiplicative order of the non-square integer $a$ modulo the prime $p.$ M. R. Murty and S. Srinivasan \cite{Murty-Srinivasan} showed that if $\displaystyle \sum_{p < x} \frac 1 {f_a(p)} = O(x^{1/4})$ then Artin's conjecture is true for $a.$ We relate the Murty-Srinivasan condition to sums involving the cyclotomic periods from the subfields of $\mathbb Q(e^{2\pi i /p})$ corresponding to the subgroups $<a> \subseteq \mathbb F_p^*.$

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call