Abstract

Let P(z):= ?nv=0 avzv be a univariate complex coefficient polynomial of degree n. It was shown by Malik [J London Math Soc, 1 (1969), 57-60] that if P(z) has all its zeros in |z| ? k, k ? 1, then max|z|=1 |P?(z)| ? n 1 + k max |z|=1 |P(z)|. In this paper, we prove an inequality for the polar derivative of a polynomial which besides give extensions and refinements of the above inequality also produce various inequalities that are sharper than the previous ones known in very rich literature on this subject.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.