Abstract

A new boson around 125 GeV without specific spin has been observed by both ATLAS and CMS at the LHC. Since its decay into a diphoton excludes the spin-1 case by the Landau–Yang theorem, it leaves 0 or 2 as the possible lowest spin for the new boson. Instead of the well-established spin-0 Higgs-like boson, we take this new boson to be a spin-2 massive graviton-like particle denoted as G, which exists copiously in extra-dimension theories, and concentrate on its phenomenology. In particular, we calculate the three-body decays of G→Vff¯′ with V and f(′) the gauge boson and fermions in the standard model (SM) and compare our results with those of the SM Higgs boson. The couplings between G and Vs are also estimated by fitting the data. A new observable that can distinguish G from the Higgs is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.