Abstract

Notch3 overexpression has been previously shown to positively regulate the generation and function of naturally occurring regulatory T cells and the expression of Foxp3, in cooperation with the pTα/pre-TCR pathway. In this study, we show that Notch3 triggers the trans activation of Foxp3 promoter depending on the T cell developmental stage. Moreover, we discovered a novel CSL/NF-κB overlapping binding site within the Foxp3 promoter, and we demonstrate that the activation of NF-κB, mainly represented by p65-dependent canonical pathway, plays a positive role in Notch3-dependent regulation of Foxp3 transcription. Accordingly, the deletion of protein kinase C, which mediates canonical NF-κB activation, markedly reduces regulatory T cell number and per cell Foxp3 expression in transgenic mice with a constitutive activation of Notch3 signaling. Collectively, our data indicate that the cooperation among Notch3, protein kinase C, and p65/NF-κB subunit modulates Foxp3 expression, adding new insights in the understanding of the molecular mechanisms involved in regulatory T cell homeostasis and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.