Abstract
Notch-tensile behavior of an Al0.1CrFeCoNi high entropy alloy (Al0.1-HEA) was studied using V-notch geometry and with local strain mapping using digital image correlation (DIC). A notch-strength ratio of 1.51 indicated notch strengthening. Further analysis of stress-strain response supplemented with microstructural analysis revealed that, while the presence of notch results in strengthening due to work hardening by twinning induced plasticity, the notch also contributes strongly to geometrical softening in the non-uniform ductility regime, and accounts for the onset of failure. The strain localization behavior of Al0.1-HEA due to the presence of V-notch was compared with three conventional alloys: Inconel 625 nickel-based superalloy, 304 stainless steel and Ti–6Al–4V titanium alloy. The study revealed that the nature of notch widening with increasing strain was dependent on material characteristics. The extent of notch widening impacted the local strain field and stress distribution, thereby influencing the propensity for crack initiation and growth. The experimental results were verified by finite element analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.