Abstract
Liver cancer is one of the most prevalent cancers in humans. Hepatocytes normally undergo dedifferentiation after the onset of hepatocellular carcinoma, which in turn facilitates the progression of cancer. Although the process of hepatocellular carcinoma dedifferentiation is of significant research and clinical value, the cellular and molecular mechanisms underlying it are still not fully characterized. We constructed a zebrafish liver cancer model based on overexpression of the oncogene krasG12V to investigate the hepatocyte dedifferentiation in hepatocellular carcinoma. We found that, after hepatocarcinogenesis, hepatocytes dedifferentiated and the Notch signaling pathway was upregulated in this progress. Furthermore, we found that inhibition of the Notch signaling pathway or deficiency of sox9b both prevented hepatocyte dedifferentiation following hepatocellular carcinoma induction, reducing cancer metastasis and improving survival. In conclusion, we found that hepatocytes undergo dedifferentiation after hepatocarcinogenesis, a process that requires Notch signaling and likewise the activation of Sox9.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.