Abstract

Recent evidence has suggested a role for Notch in memory consolidation but the means by which this evolutionarily conserved mechanism serves these plasticity-related processes remains to be established. We have examined a role for this signalling pathway in the hippocampal dentate gyrus of Wistar rats at increasing times following passive avoidance conditioning. Our principal finding is that a transient attenuation of Notch signalling occurs at the 10–12 h post-training time. In this period, extracellular Notch-1 protein fragment exhibited a significant 2- to 3-fold increase but, by contrast, Notch-1 mRNA levels were significantly reduced. Moreover, transient inactivation of Notch-1 signalling was further suggested by concomitant reductions in the Notch ligand Jagged-1 and Notch-1 target protein Hes-1 mRNA levels. The C-terminal fragment of PS-1, necessary for γ-secretase activity, was also significantly reduced at the 12 h post-training time. These events were commensurate with the increase of a Notch immunoreactive fragment of 66 kDa in the nuclear fraction of the dentate gyrus. This fragment, identified with two different Notch-1 antisera, was not the expected NICD polypeptide of ∼110 kDa and its accumulation was found to correlate with a significantly reduced expression of the Hes-1 transcriptional repressor. During the period of reduced Notch activity, a transient increase in soluble β-catenin and GSK-3β phosphorylation was observed, indicating a reciprocal activation of the Wnt signalling pathway. As down-regulation of Notch signalling promotes differentiation and neurite outgrowth in post-mitotic neurons, it is proposed that this pathway regulates the integration of synapses transiently produced during memory consolidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call