Abstract

Despite recent therapeutic advances, multiple myeloma (MM) is still an incurable neoplasia due to intrinsic or acquired resistance to therapy. Myeloma cell localization in the bone marrow milieu allows direct interactions between tumor cells and non-tumor bone marrow cells which promote neoplastic cell growth, survival, bone disease, acquisition of drug resistance and consequent relapse. Twenty percent of MM patients are at high-risk of treatment failure as defined by tumor markers or presentation as plasma cell leukemia. Cumulative evidences indicate a key role of Notch signaling in multiple myeloma onset and progression. Unlike other Notch-related malignancies, where the majority of patients carry gain-of-function mutations in Notch pathway members, in MM cell Notch signaling is aberrantly activated due to an increased expression of Notch receptors and ligands; notably, this also results in the activation of Notch signaling in surrounding stromal cells which contributes to myeloma cell proliferation, survival and migration, as well as to bone disease and intrinsic and acquired pharmacological resistance. Here we review the last findings on the mechanisms and the effects of Notch signaling dysregulation in MM and provide a rationale for a therapeutic strategy aiming at inhibiting Notch signaling, along with a complete overview on the currently available Notch-directed approaches.

Highlights

  • Multiple Myeloma (MM) is a hematological malignancy characterized by a malignant proliferation of bone marrow (BM) post-germinal center plasma cells (PCs) and release of monoclonal protein in blood or urine

  • MM may be preceded by a monoclonal gammopathy of undetermined significance (MGUS), an indolent, asymptomatic, premalignant phase characterized by a small clonal population (

  • In particular we showed that: i) high Notch signaling in MM cells stimulates the release of the major osteoclastogenic soluble factor, RANKL; ii) MM cell-derived Notch ligands (Jagged1 and 2) activate Notch signaling in surrounding BMSCs, boosting the secretion of RANKL; iii) RANKL engages RANK on OCL progenitors, thereby activating the osteoclastogenic NF-kB pathway, which in turn stimulates the osteoclastogenic Notch signaling by promoting Notch2 expression; and iv) MM cell-derived Jagged ligands further boost Notch signaling in OCL progenitors by engaging Notch2

Read more

Summary

Introduction

Multiple Myeloma (MM) is a hematological malignancy characterized by a malignant proliferation of bone marrow (BM) post-germinal center plasma cells (PCs) and release of monoclonal protein in blood or urine. Overall these results suggest that the activation of Notch signaling pathway, mediated by the overexpression of Notch receptors or ligands, may have a key role in promoting MM progression and maintenance.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call