Abstract

Inplane tensile fracture of unnotched and notched thermoset graphite-epoxy and thermoplastic graphite-PEEK composite laminates is examined. Both fibre-dominated quasi-isotropic and matrix dominated ±45 angle-ply layups were investigated. Classical lamination theory predictions of elastic and strength properties of unnotched specimens are compared with experiments. Several notched geometries, i.e. centre-notched, double-edge notched and open-hole specimens subjected to tensile loading to fracture were examined. The notched strength of the quasi-isotropic laminates was analysed by a damage zone model, where damage around the notch is represented by an “equivalent crack” with cohesive force acting between the crack surfaces. Good agreement between experimental and calculated strength was observed for the graphite-epoxy laminates which failed in a collinear manner. For the graphite-PEEK laminates discrepancies between predicted and experimental strength are related to observed deviations from collinear crack growth. The angle-ply graphite-PEEK laminates showed larger notch sensitivity than the corresponding graphite-epoxy, probably due to less degree of stress relieving damage formation around the notch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.