Abstract

Activation of the canonical Notch pathways has been implicated in Th cell differentiation, but the role of specific Notch ligands in Th2-mediated allergic airway responses has not been completely elucidated. In this study, we show that delta-like ligand 4 (Dll4) was upregulated on dendritic cells in response to cockroach allergen. Blocking Dll4 in vivo during either the primary or secondary response enhanced allergen-induced pathogenic consequences including airway hyperresponsiveness and mucus production via increased Th2 cytokines. In vitro assays demonstrated that Dll4 regulates IL-2 in T cells from established Th2 responses as well as during primary stimulation. Notably, Dll4 blockade during the primary, but not the secondary, response increased IL-2 levels in lung and lymph node of allergic mice. The in vivo neutralization of Dll4 was associated with increased expansion and decreased apoptosis during the primary allergen sensitization. Moreover, Dll4-mediated Notch activation of T cells during primary stimulation in vitro increased apoptosis during the contraction/resting phase of the response, which could be rescued by exogenous IL-2. Consistent with the role for Dll4-mediated IL-2 regulation in overall T cell function, the frequency of IL-4-producing cells was also significantly altered by Dll4 both in vivo and in vitro. These data demonstrate a regulatory role of Dll4 both in initial Th2 differentiation and in Th2 cytokine production in established allergic responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.