Abstract

The activation of cochlear progenitor cells is a promising approach for hair cell (HC) regeneration and hearing recovery. The mechanisms underlying the initiation of proliferation of postnatal cochlear progenitor cells and their transdifferentiation to HCs remain to be determined. We show that Notch inhibition initiates proliferation of supporting cells (SCs) and mitotic regeneration of HCs in neonatal mouse cochlea in vivo and in vitro. Through lineage tracing, we identify that a majority of the proliferating SCs and mitotic-generated HCs induced by Notch inhibition are derived from the Wnt-responsive leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5(+)) progenitor cells. We demonstrate that Notch inhibition removes the brakes on the canonical Wnt signaling and promotes Lgr5(+) progenitor cells to mitotically generate new HCs. Our study reveals a new function of Notch signaling in limiting proliferation and regeneration potential of postnatal cochlear progenitor cells, and provides a new route to regenerate HCs from progenitor cells by interrupting the interaction between the Notch and Wnt pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.