Abstract

We present a driving scheme for solid-state quantum emitters, referred to as Notch-filtered Adiabatic Rapid Passage (NARP), that utilizes frequency-swept pulses containing a spectral hole resonant with the optical transition in the emitter. NARP enables high-fidelity state inversion and exhibits robustness to variations in the laser pulse parameters, benefits that are derived from the insensitivity of the condition for adiabatic evolution. NARP also offers the advantage of immunity to phonon-mediated excitation-induced dephasing when positively chirped control pulses are used. Our resonant driving approach could be combined with spectral filtering of the scattered pump light and photonic devices for enhanced collection efficiency to realize simultaneous high indistinguishability and brightness in single photon source applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.