Abstract

A new Eu-centered metal-organic framework, [(CH3)2NH2][Eu(cdip)(H2O)] (compound 1), was fabricated by the reaction of Eu(NO3)3·6H2O and a high-symmetry ligand, 5,5'-carbonyldiisophthalic acid (H4cdip). Interestingly, compound 1 exhibits extraordinary stability, including air, thermal, and chemical stabilities, in an aqueous solution with a broad pH range of 1-14, which is rarely seen in the field of metal-organic framework materials. Notably, compound 1 is proved to be an exceptional prospective luminescent sensor for recognizing 1-hydroxypyrene and uric acid both in DMF/H2O solution and human urine with a fast response (1-HP: 10 s; UA: 80 s), high quenching efficiency Ksv (7.01 × 104 M-1 for 1-HP and 5.46 × 104 M-1 for UA in DMF/H2O solution; 2.10 × 104 M-1 for 1-HP and 3.43 × 104 M-1 for UA in human urine), low limit of detection (1.61 μM for 1-HP and 0.54 μM for UA in DMF/H2O solution; 0.71 μM for 1-HP and 0.58 μM for UA in human urine), and remarkable anti-interference ability based on luminescence-quenching effects observable by the naked eye. This work provides a new strategy for the exploration of potential luminescent sensors based on Ln-MOFs for 1-HP, UA, or other biomarkers in biomedical and biological fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call