Abstract

Applied Physics![Figure][1] CREDIT: CHOPIN AND KUDROLLI PHYS. REV. LETT. 107 , 208304 (2011) The shape of soap bubbles, the patterns in a coffee ring stain, and the stability of a sand pile all reflect the interplay and balance between material properties and inertial, surface, and viscous forces. Similar considerations arise in inkjet printing, a technique that has gone beyond creating documents and photos to patterning biological cells and electronic circuits. Chopin and Kudrolli consider a related scenario, namely the dripping of a dense granular suspension onto an absorbent surface, where the rapid removal of the liquid by the substrate causes jamming of the granular particles that leads to the formation of stable structures. By manipulating the droplet rate, free-fall time, and density of the suspension, they are able to create a range of delicate structures. For example, in a simple tower built from linearly stacked droplets, the final shape of each segment depends on how the substrate (filter paper or a porous bed of glass beads) varies the drainage rate of the fluid. As the flux rate increases, towers become wider and smoother; individual segments lose their corrugated nature and begin to fuse into each other as neighboring droplets can interact before jamming occurs. Perhaps most unusual are the towers formed from low-impact droplets at high packing fraction, which can be stacked in a zig-zag fashion. Phys. Rev. Lett. 107 , 208304 (2011). [1]: pending:yes

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.