Abstract

Few empirical studies have quantified relationships between changing weather and migratory songbirds, but such studies are vital in a time of rapid climate change. Climate change has critical consequences for avian breeding ecology, geographic ranges, and migration phenology. Changing precipitation and temperature patterns affect habitat, food resources, and other aspects of birds’ life history strategies. Such changes may disproportionately affect species confined to rare or declining ecosystems, such as temperate grasslands, which are among the most altered and endangered ecosystems globally. We examined the influence of changing weather on the dickcissel (Spiza americana), a migratory songbird of conservation concern that is an obligate grassland specialist. Our study area in the North American Great Plains features high historic weather variability, where climate change is now driving higher precipitation and temperatures as well as higher frequencies of extreme weather events including flooding and droughts. Dickcissels share their breeding grounds with brown-headed cowbirds (Molothrus ater), brood parasites that lay their eggs in the nests of other songbirds, reducing dickcissel productivity. We used 9 years of capture-recapture data collected over an 18-year period to test the hypothesis that increasing precipitation on dickcissels’ riparian breeding grounds is associated with abundance declines and increasing vulnerability to cowbird parasitism. Dickcissels declined with increasing June precipitation, whereas cowbirds, by contrast, increased. Dickcissel productivity appeared to be extremely low, with a 3:1 ratio of breeding male to female dickcissels likely undermining reproductive success. Our findings suggest that increasing precipitation predicted by climate change models in this region may drive future declines of dickcissels and other songbirds. Drivers of these declines may include habitat and food resource loss related to flooding and higher frequency precipitation events as well as increased parasitism pressure by cowbirds. Positive correlations of June-July precipitation, temperature, and time since grazing with dickcissel productivity did not mitigate dickcissels’ declining trend in this ecosystem. These findings highlight the importance of empirical research on the effects of increasing precipitation and brood parasitism vulnerability on migratory songbird conservation to inform adaptive management under climate change.

Highlights

  • Global climate change is influencing birds’ breeding ecology, geographic ranges, and migration phenology

  • These findings contrast with previous research elsewhere in the Great Plains testing the “climate bottleneck hypothesis” that found that grassland breeding bird abundance did not significantly change in response to changes in precipitation (Wiens, 1973; Zimmerman, 1992), with the important caveat that our study areas differed in their proximity to riparian corridors and flooding potential

  • Our findings highlight dickcissels’ vulnerability to population declines due to increasing precipitation associated with climate change in this ecosystem, together with increasing cowbird abundance and parasitism that may further reduce dickcissel productivity

Read more

Summary

Introduction

Global climate change is influencing birds’ breeding ecology, geographic ranges, and migration phenology. For burrowing owls (Athene cunicularia), precipitation declines and higher temperatures on the breeding grounds were associated with delayed arrival dates and lower abundance and productivity, resulting in population collapse (Cruz-McDonnell and Wolf, 2016). For whooping cranes (Grus americana), precipitation declines and higher temperatures on the breeding grounds are predicted to drive declines in juvenile recruitment by increasing their vulnerability to mammalian nest predators, driving population-wide declines (Butler et al, 2017). In addition to the influence of changing precipitation and temperature on the breeding grounds, climatic conditions on birds’ migration routes and wintering grounds may influence bird population dynamics, including through carry-over effects that exert influence in multiple seasons (Marra et al, 1998; Finch et al, 2014; O’Connor et al, 2014; Akresh et al, 2019). Climate change effects may vary considerably within and across geographic regions (e.g., USGCRP, 2018), carrying the potential to affect local bird populations differently across geographic gradients (e.g., Jensen and Cully, 2005)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call