Abstract

SummaryPolaritons are unique hybrid light-matter states that offer an alternative way to manipulate chemical processes. In this work, we show that singlet fission dynamics can be accelerated under strong light-matter coupling. For superexchange-mediated singlet fission, state mixing speeds up the dynamics in cavities when the lower polariton is close in energy to the multiexcitonic state. This effect is more pronounced in non-conventional singlet fission materials in which the energy gap between the bright singlet exciton and the multiexcitonic state is large ( eV). In this case, the dynamics is dominated by the polaritonic modes and not by the bare-molecule-like dark states, and, additionally, the resonant enhancement due to strong coupling is robust even for energetically broad molecular states. The present results provide a new strategy to expand the range of suitable materials for efficient singlet fission by making use of strong light-matter coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call