Abstract

In this paper, we study the problem of estimating subjective visual properties (SVP) for images, which is an emerging task in Computer Vision. Generally speaking, collecting SVP datasets involves a crowdsourcing process where annotations are obtained from a wide range of online users. Since the process is done without quality control, SVP datasets are known to suffer from noise. This leads to the issue that not all samples are trustworthy. Facing this problem, we need to develop robust models for learning SVP from noisy crowdsourced annotations. In this paper, we construct two general robust learning frameworks for this application. Specifically, in the first framework, we propose a probabilistic framework to explicitly model the sparse unreliable patterns that exist in the dataset. It is noteworthy that we then provide an alternative framework that could reformulate the sparse unreliable patterns as a "contraction" operation over the original loss function. The latter framework leverages not only efficient end-to-end training but also rigorous theoretical analyses. To apply these frameworks, we further provide two models as implementations of the frameworks, where the sparse noise parameters could be interpreted with the HodgeRank theory. Finally, extensive theoretical and empirical studies show the effectiveness of our proposed framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.